skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harvey, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. The critically endangered North Atlantic right whale (Eubalaena glacialis) faces significant anthropogenic mortality. Recent climatic shifts in traditional habitats have caused abrupt changes in right whale distributions, challenging traditional conservation strategies. Tools that can help anticipate new areas where E. glacialis might forage could inform proactive management. In this study, we trained boosted regression tree algorithms with fine-resolution modeled environmental covariates to build prey copepod (Calanus) species-specific models of historical and future distributions of E. glacialis foraging habitat on the Northwest Atlantic Shelf, from the Mid-Atlantic Bight to the Labrador Shelf. We determined foraging suitability using E. glacialis foraging thresholds for Calanus spp. adjusted by a bathymetry-dependent bioenergetic correction factor based on known foraging behavior constraints. Models were then projected to 2046–2065 and 2066–2085 modeled climatologies for representative concentration pathway scenarios RCP 4.5 and RCP 8.5 with the goal of identifying potential shifts in foraging habitat. The models had generally high performance (area under the receiver operating characteristic curve > 0.9) and indicated ocean bottom conditions and bathymetry as important covariates. Historical (1990–2015) projections aligned with known areas of high foraging habitat suitability as well as potential suitable areas on the Labrador Shelf. Future projections suggested that the suitability of potential foraging habitat would decrease in parts of the Gulf of Maine and southwestern Gulf of Saint Lawrence, while potential habitat would be maintained or improved on the western Scotian Shelf, in the Bay of Fundy, on the Newfoundland and Labrador shelves, and at some locations along the continental shelf breaks. Overall, suitable habitat is projected to decline. Directing some survey efforts toward emerging potential foraging habitats can enable conservation management to anticipate the type of distribution shifts that have led to high mortality in the past. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026
  3. Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms. 
    more » « less
  4. West, Brooke (Ed.)
    Objectives An Opioid Treatment Desert is an area with limited accessibility to medication-assisted treatment and recovery facilities for Opioid Use Disorder. We explored the concept of Opioid Treatment Deserts including racial differences in potential spatial accessibility and applied it to one Midwestern urban county using high resolution spatiotemporal data. Methods We obtained individual-level data from one Emergency Medical Services (EMS) agency (Columbus Fire Department) in Franklin County, Ohio. Opioid overdose events were based on EMS runs where naloxone was administered from 1/1/2013 to 12/31/2017. Potential spatial accessibility was measured as the time (in minutes) it would take an individual, who may decide to seek treatment after an opioid overdose, to travel from where they had the overdose event, which was a proxy measure of their residential location, to the nearest opioid use disorder (OUD) treatment provider that provided medically-assisted treatment (MAT). We estimated accessibility measures overall, by race and by four types of treatment providers (any type of MAT for OUD, Buprenorphine, Methadone, or Naltrexone). Areas were classified as an Opioid Treatment Desert if the estimate travel time to treatment provider (any type of MAT for OUD) was greater than a given threshold. We performed sensitivity analysis using a range of threshold values based on multiple modes of transportation (car and public transit) and using only EMS runs to home/residential location types. Results A total of 6,929 geocoded opioid overdose events based on data from EMS agencies were used in the final analysis. Most events occurred among 26–35 years old (34%), identified as White adults (56%) and male (62%). Median travel times and interquartile range (IQR) to closest treatment provider by car and public transit was 2 minutes (IQR: 3 minutes) and 17 minutes (IQR: 17 minutes), respectively. Several neighborhoods in the study area had limited accessibility to OUD treatment facilities and were classified as Opioid Treatment Deserts. Travel time by public transit for most treatment provider types and by car for Methadone-based treatment was significantly different between individuals who were identified as Black adults and White adults based on their race. Conclusions Disparities in access to opioid treatment exist at the sub-county level in specific neighborhoods and across racial groups in Columbus, Ohio and can be quantified and visualized using local public safety data (e.g., EMS runs). Identification of Opioid Treatment Deserts can aid multiple stakeholders better plan and allocate resources for more equitable access to MAT for OUD and, therefore, reduce the burden of the opioid epidemic while making better use of real-time public safety data to address a public health epidemic that has turned into a public safety crisis. 
    more » « less